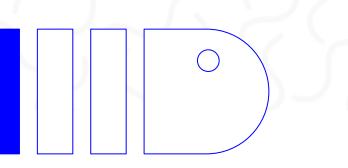


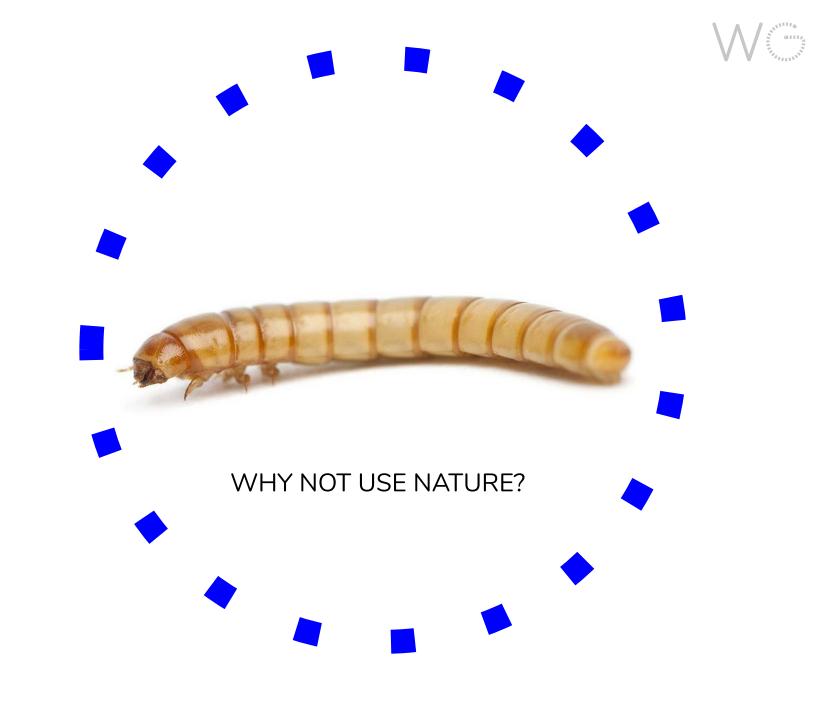
WORM GENERATION

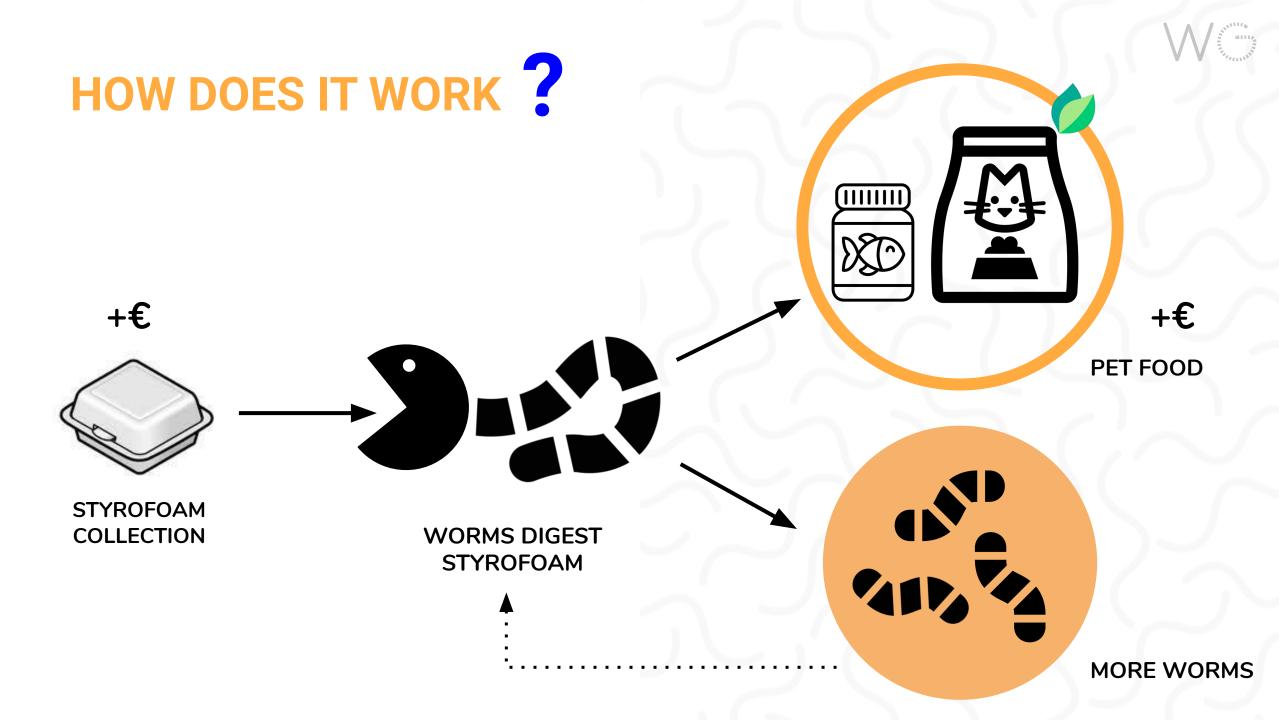
WORMING OUR WAY OUT OF PLASTIC WASTE

AND BUSINESS



PROBLEM?




10%

WHAT ABOUT RECYCLING...

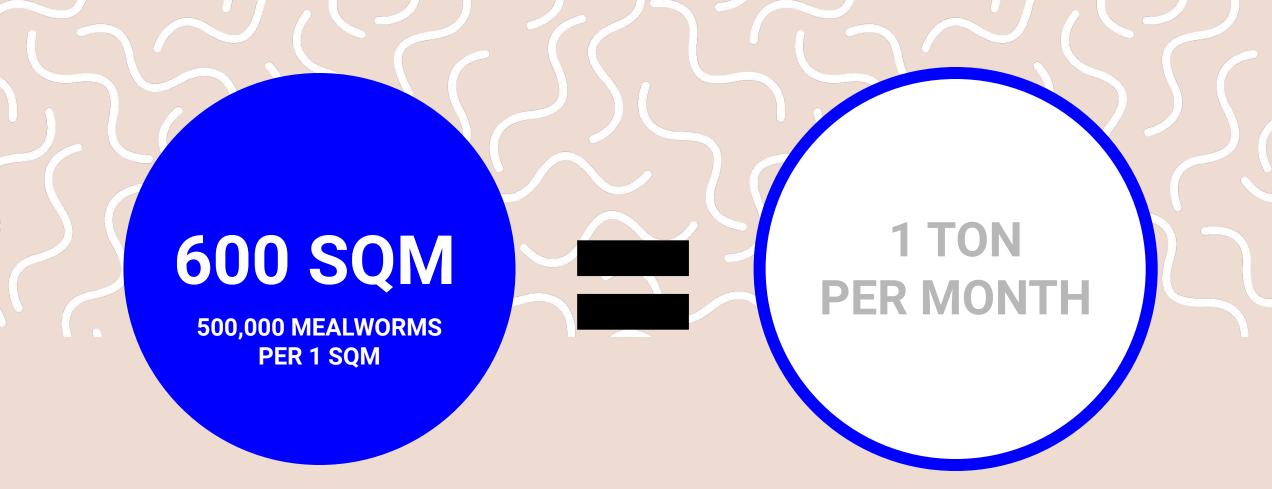
SOLUTION

()

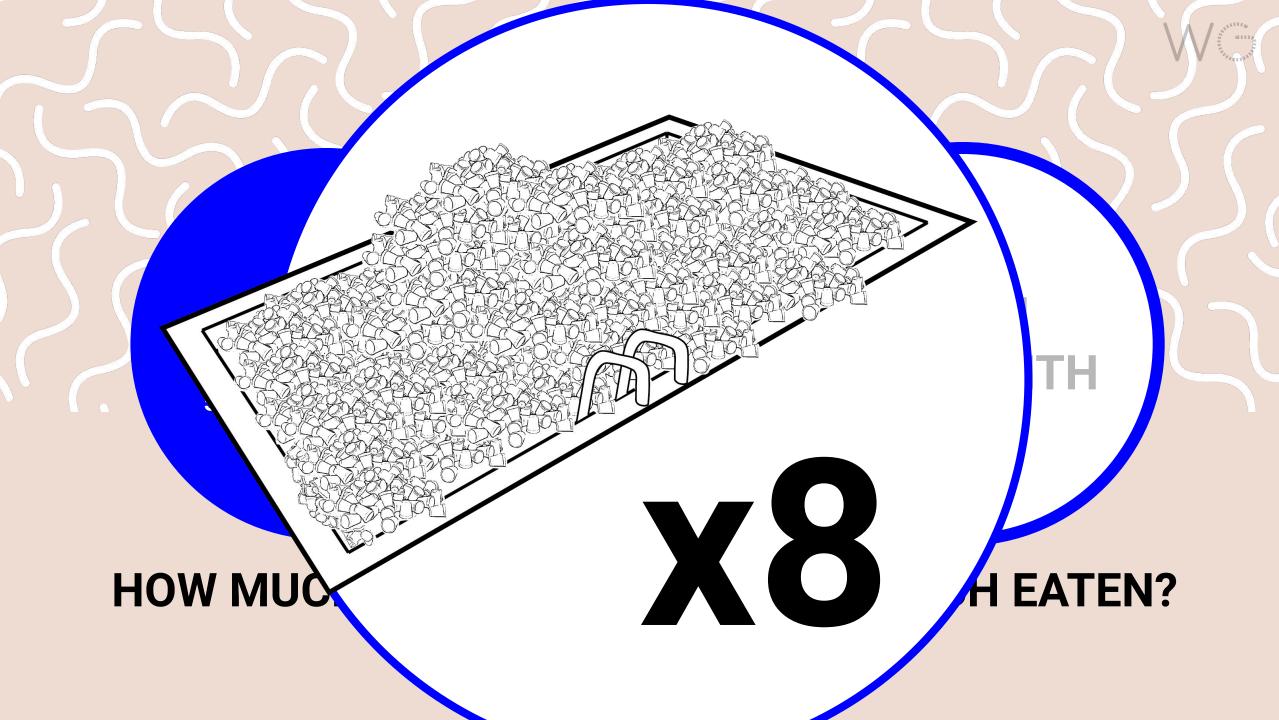
WHO OWNS THE PROBLEM?

()

&


BUT, DOES IT WORK? YES WE TESTED IT!

Supervised by Pr Auclerc, A



anny

HOW MUCH SPACE?

HOW MUCH EATEN?

THETEAM

MYRIAM #biology

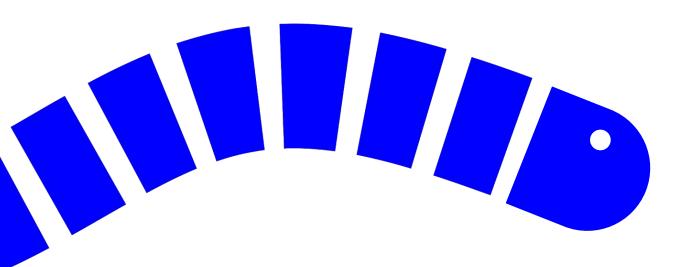
MADHAVI #architecture

#biology

#architecture

EVE

KAROLINA


#business

MALTE #business

WE NEED CONTACTS TO:

Municipalities Waste Management Companies

office@wormgeneration.com

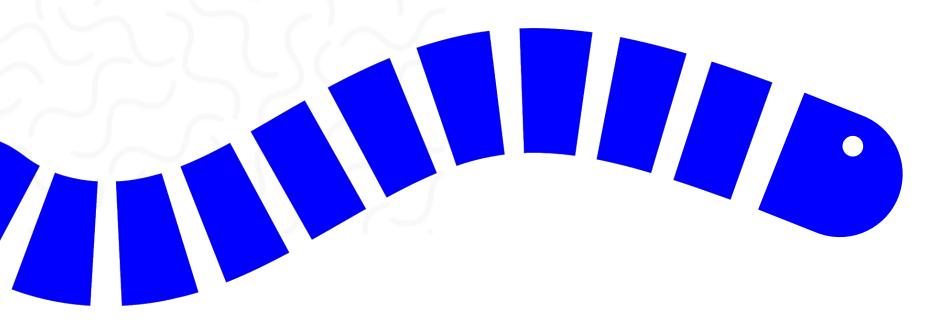
Worm Generation

www.wormgeneration.com

malte.paschen@outlook.com

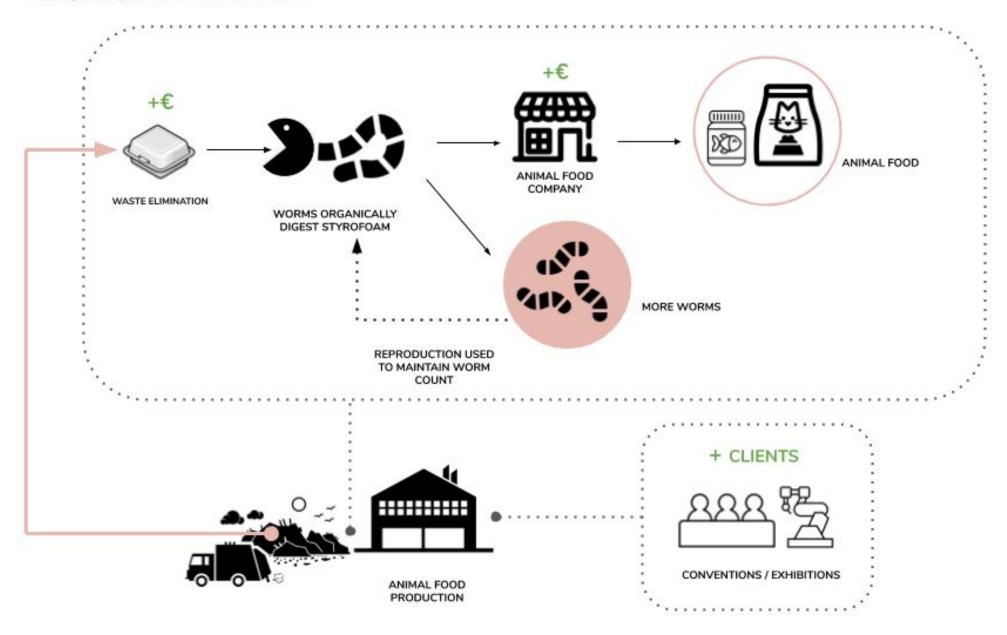
https://www.linkedin.com/company/ worm-generation/

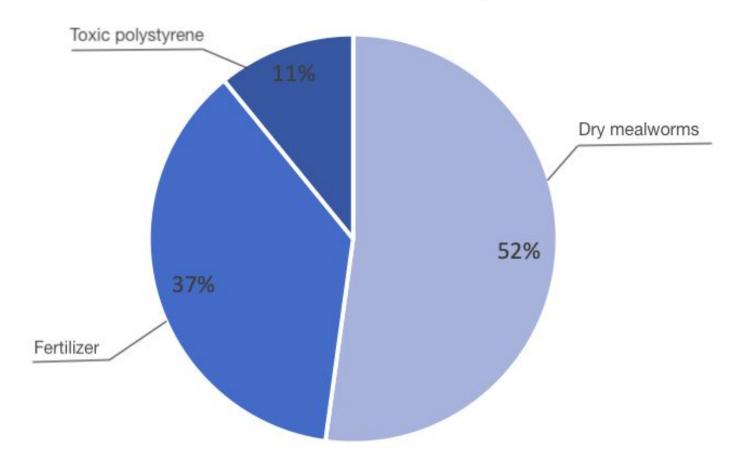
STATUS QUO?


MARKETING

BUSINESS DEVELOPMENT

RESEARCH

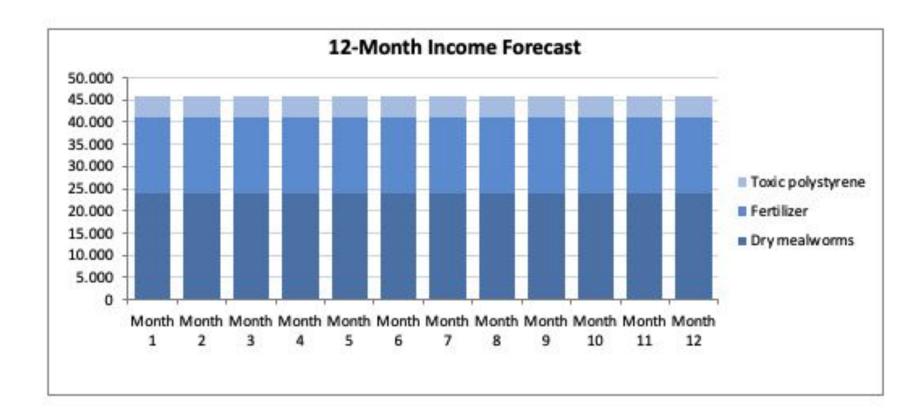

FINANCIAL PROJECTION


BUSINESS MODEL

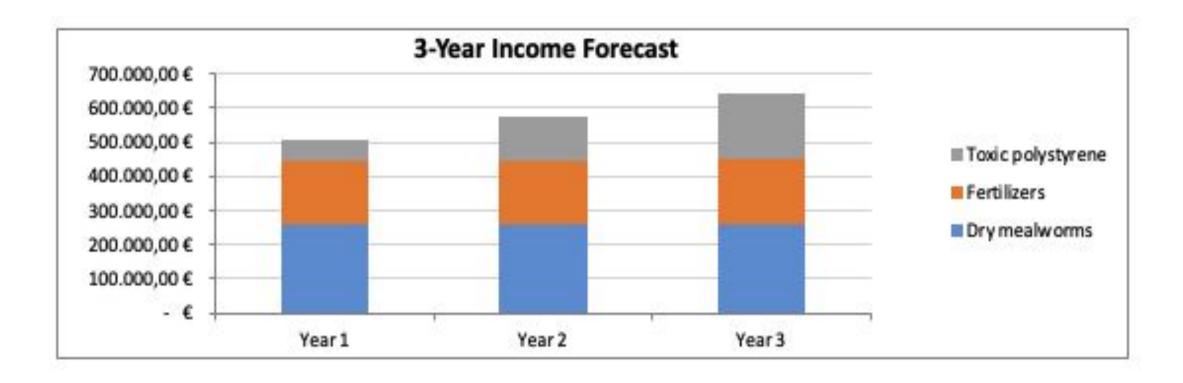
Mapping the major components of the business

Income Projection (%)

1	A /	 117.0
	\ /	a
V	V	ALL
•	•	 411.

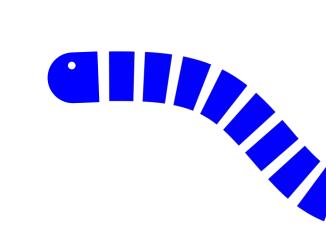

INCOME	2021 % of	f OI	2022 %	of OI	2023 % d	of OI
Operating Income						
Dry mealworms	205.824,00€	71,0%	207.539,20€	60,3%	209.254,40 €	52,5%
Fertilizer	50.463,00€	17,4%	50.463,00€	14,7%	50.463,00€	12,7%
Toxic polystyrene	33.480,00€	11,6%	86.220,00€	25,0%	138.960,00€	34,9%
Total Operating Income (OI)	289.767,00€		344.222,20 €		398.677,40 €	
Total INCOME	289.767,00 €	100,0%	344.222,20 €	100,0%	398.677,40 €	100,0%
EXPENSES						
Operating Expenses						
Accounting and Legal	2.500,00€	0,9%	2.500,00 €	0,7%	2.500,00€	0,6%
Utilities	6.736,51€	2,3%	6.736,51€	2,0%	6.736,51€	1,7%
Feed costs	5.739,17€	2,0%	5.739,17€	1,7%	5.739,17€	1,4%
Research and Development	19.250,00€	6,6%	19.250,00€	5,6%	19.250,00€	4,8%
Salaries and Wages	72.000,00€	24,8%	72.000,00€	20,9%	72.000,00€	18,1%
Depreciation and amortization	21.104,69€	7,3%	21.104,69€	6,1%	21.104,69€	5,3%
Web Hosting and Domains	50,00€	0,0%	50,00€	0,0%	50,00€	0,0%
Total Operating Expenses	127.380,36€	44,0%	127.380,36 €	37,0%	127.380,36€	32,0%
Total EXPENSES	127.380,36 €	44,0%	127.380,36 €	37,0%	127.380,36 €	32,0%
NET INCOME	162.386,64 €		216.841,84 €		271.297,04 €	

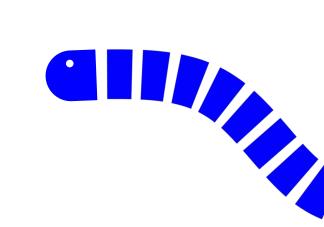
 NET INCOME for 20 facilities
 3.247.732,79 €
 4.336.836,79 €
 5.425.940,79 €


Income Forecast 12m

600m2

Income Forecast 3yrs

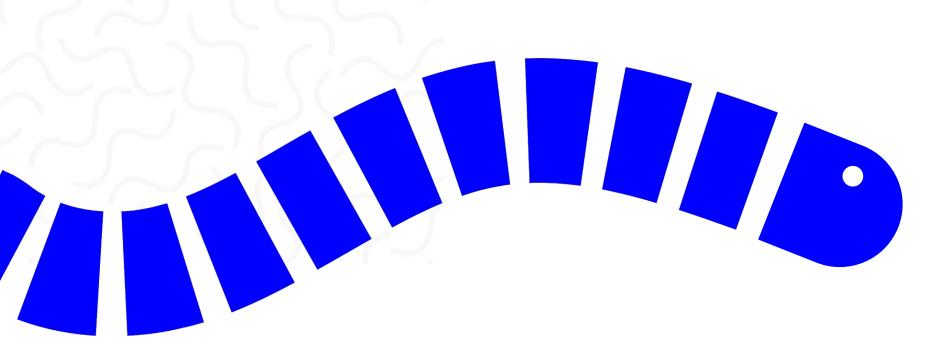



ROI 600 m2

RETURN ON INVESTMENT	2020	2021	2022	2023
Farm initial investment	428.020,85€			
Net Income		162.386,64 €	216.841,84 €	271.297,04€
ROI		-6,2%	-1,0%	5,4%

ROI 300 m2

RETURN ON INVESTMENT	2020	2021	2022	2023
Farm initial investment	241.425,51€			
Net Income	\sim	47.804,26€	47.804,26€	47.804,26€
ROI		-8,0%	-6,0%	-4,1%


ROI 1200 m2

RETURN ON INVESTMENT	2020	2021	2022	2023
Farm initial investment	705.603,05€	_		
Net Income	Ja	408.961,51€	408.961,51€	408.961,51€
ROI		-4,2%	1,6%	7,4%

MARKETING

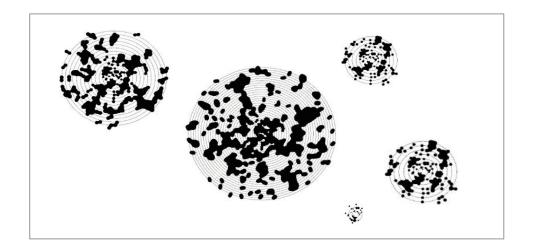
ASSEMBLY

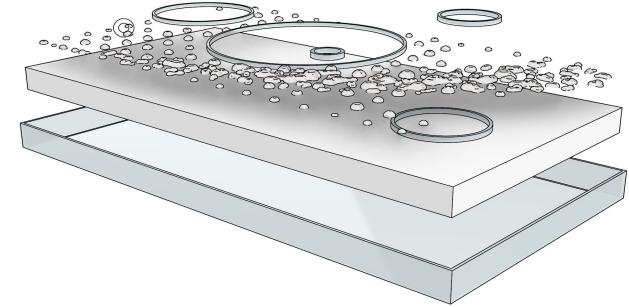
The styrofoam is to be etched in the laser cutter using the file containing the curves to be etched.

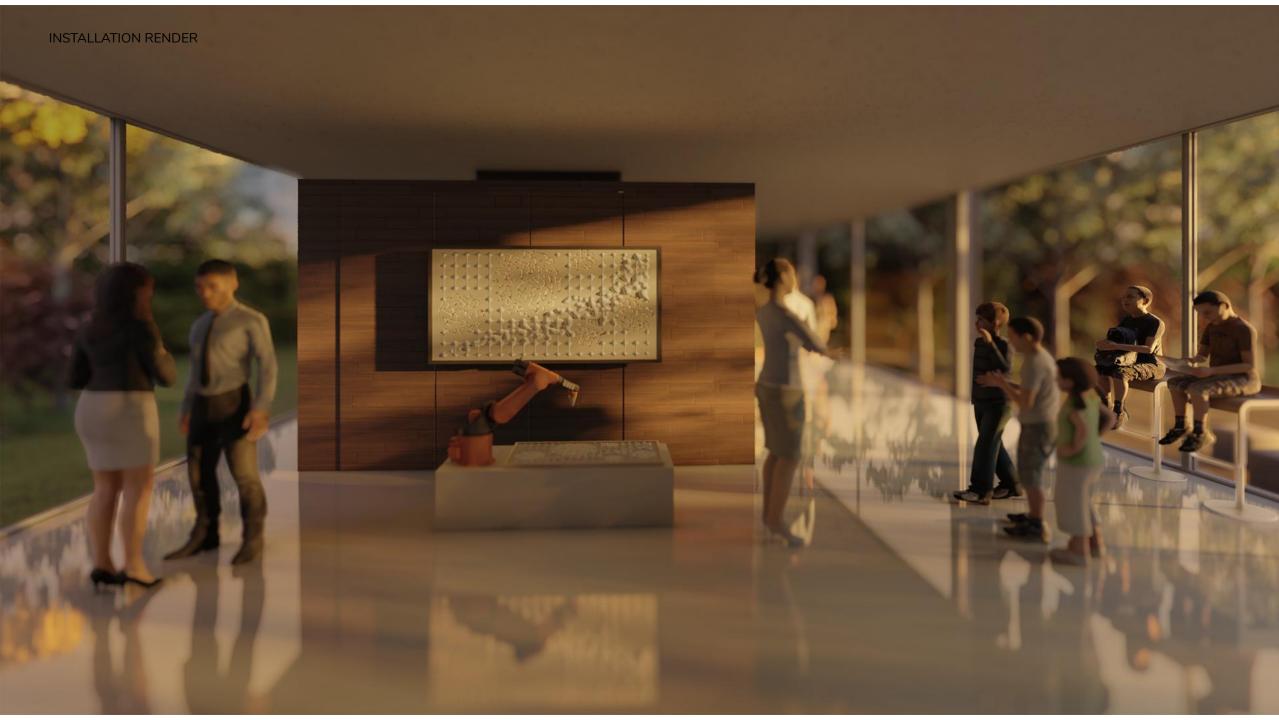
The styrofoam is then to be placed into the assembled acrylic case.

Once the barriers are placed on the styrofoam surrounding the eating pattern, the juice points can be inserted into the pattern.

The mealworms will then be placed into the barriers.

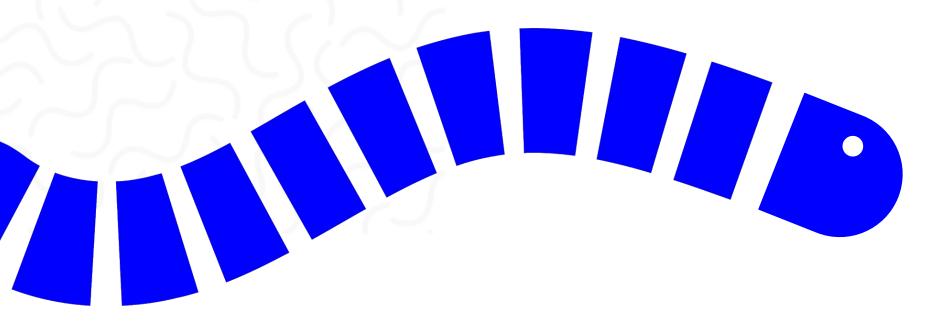

After this set up, the robotic arm can start the process of printing the clay and waste mixture.


Width: 50cm


Length: 100cm

Width: 5cm

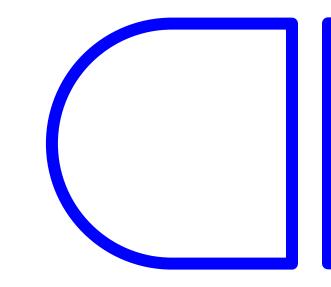
Would you be interested in buying our pet food?

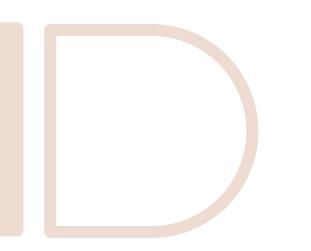

117 answers

ENVIRONMENTAL IMPACT

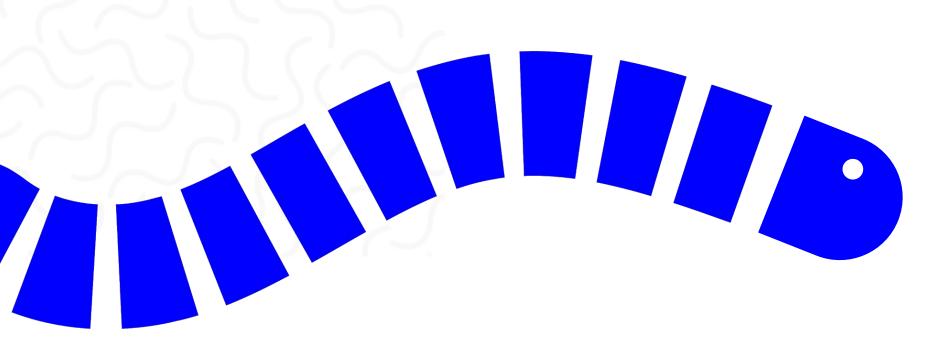
Environmental impact

14 mln tons of polystyrene

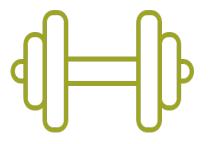

1200 m2


	Number of facilities (600m2)	1	20	250
600 m2	Surface in total (ha)	0,06	1,2	15
	Years	1.167	58	5

Number of facilities (1200m2)	1	20	250
Surface in total (ha)	0,12	2,4	30,0
Years	467	23	2



MARKET ANALYSIS



MARKET SIZE/ VOLUME AND MARKET POTENTIAL/ GROWTH

- Germany: whole trash being burned in 2011: 19,7 mio tons, in 2014 it was 44% of all plastics being burned
- Austria: 900.000 tons of plastic waste each year (71% burned, 28% recycled, 1% landilled) forecast 2021: over 1 million tons already!
- Worldwide plastic waste: only 9% being recycled, therefore 90% either burned (12%) or landfilled (60%)
- Special waste burning waste facilities: min. 1100 degree
- Revenue potential
- Expected growth because of landfill bans (e.g. planned EU-wide)

MARKET SIZE/ VOLUME AND MARKET POTENTIAL/ GROWTH

EPS + XPS: Polystyrene: market is growth at a CAGR of 4.7% during the forecast period Market Size: of ~ 280.000.000€ just in three countries HBCD-contaminated polystyrene in Germany: every year more than 40.000 tons

= market size Germany 144.000.000€/ year

France: ~ 117.000.000€ / year

Austria ~ 15.000.000€ / year

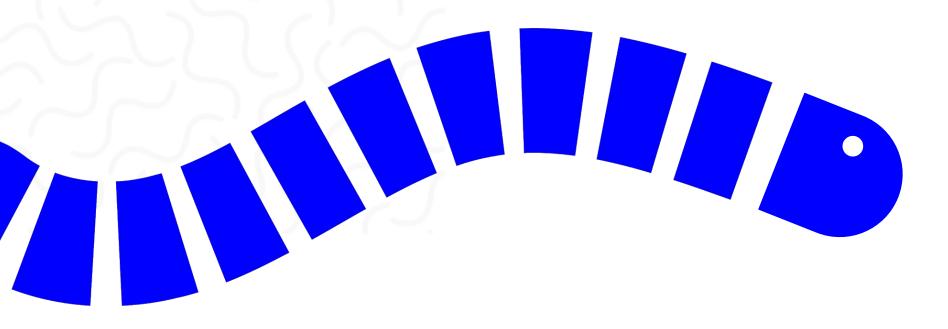
https://www.sabprofil.de/assets/user/Duits/HBCD_document.pdf

https://www.duh.de/projekte/hbcd-daemmstoffe/

https://www.mordorintelligence.com/industry-reports/polystyrene-market

MARKET SIZE/ VOLUME AND MARKET POTENTIAL/ GROWTH

 1,1 mrd tons of waste daily burned outside of controlled structured/ 40% of global waste being burned uncontrolled in open fire (v. a. in developing countries) -> Higher consumption -> Higher amount of waste


Combustion: this releases large quantities of toxic gases and dirt particles into the air. These are pollutants that do not appear in any official statistics and can cause enormous damage to the climate and health.

□ Waste incineration responsible for five percent of total man-made greenhouse gas emissions

- The exact number and variety of pollutants produced by and released from waste incineration is not known.
- The danger lies in the fact that a great many different substances are present when waste is incinerated. Due to the large number of substances, it is hardly possible to determine the danger of individual compounds that only occur in trace amounts.
- Alternative: Avoiding producing waste

COMPLETED RESEARCH

EXPERIMENT : SET 2

porosity

SET 2B : POROSITY

A 4mm thick piece of styrofoam was injected with apple juice in random locations and placed into the container of worms

SET 2C : POROSITY

A 5 gram piece of styrofoam was injected with apple juice in random locations and placed into the container of worms.

EXPERIMENT : SET 2C

porosity

Initial weight: 5 grams Final weight: 2 grams

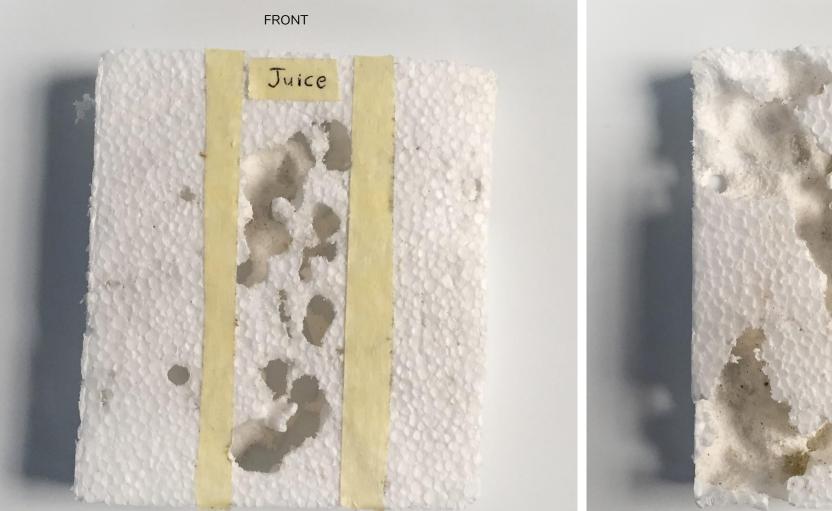
Mass eaten: 3 grams Duration: 3 days

CONTROLS

Juice was inserted into the central area of the styrofoam. The worms were then placed on and around the piece of styrofoam.

OBSERVATIONS

The worms have infiltrated largely the central area where the driver was placed, proving that thai are able to eat in a designed region.


EXPERIMENT : SET 3A controlling porosity

Initial weight: 4.7 grams Final weight: 3.5 grams

Mass eaten: 1.2 grams Duration: 10 days

140

The same experiment was carried out with the superworms.

The underside showed the same results at an elevated scale.

ASSESSMENT

styrofoam remnants

.

Mealworms were left in the remnants of the styrofoam from an eating test. Samples were taken to understand if the remnants were be eaten and if new organic matter was being produced.

Main interrogations before starting the experiments:

- Do mealworms actually eat polystyrene?
- How much do they eat and therefore how quickly do they degrade the polystyrene?
- How to optimally breed mealworms (temperature, humidity, brightness)?
- What is the life cycle of the mealworm (lifespan, age of maturity, reproduction rate, mortality rate)?

EXPERIMENTS

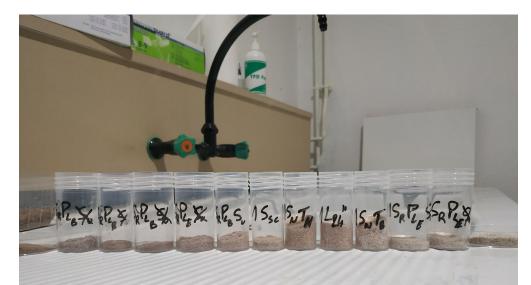
3 repetitions of each: (PS = polystyrene)

- Control (normal quantity of food + without PS)
- Normal quantity of food + block of PS
- Few food + block of PS

Without food:

- ➤ Block of PS:
 - PS injected with sugar
 - Normal PS
- \succ Crumbled PS:
 - PS injected with sugar
 - Normal PS
- Wood chips + block of polystyrene

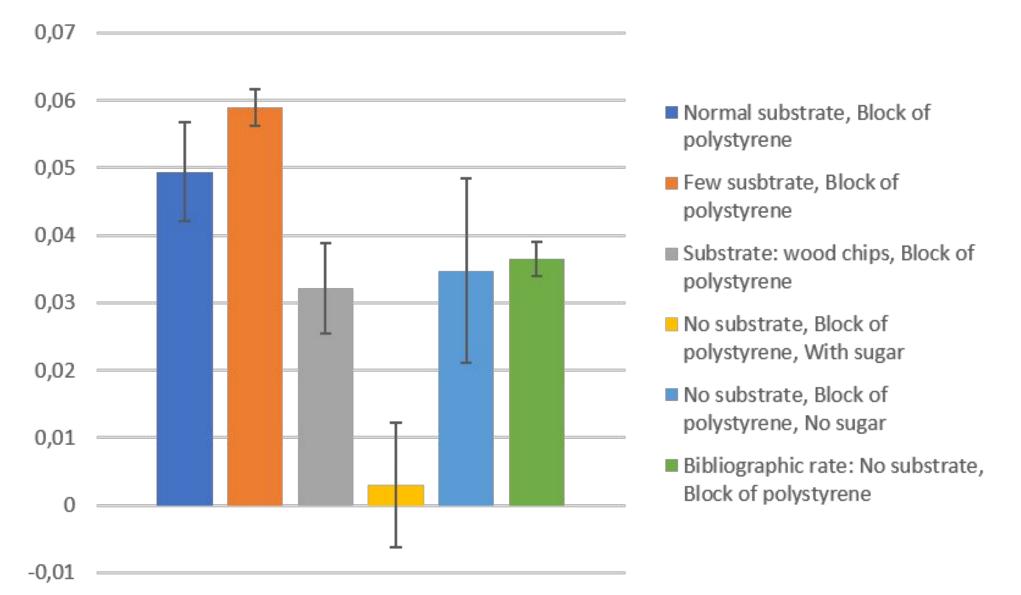
Material and method



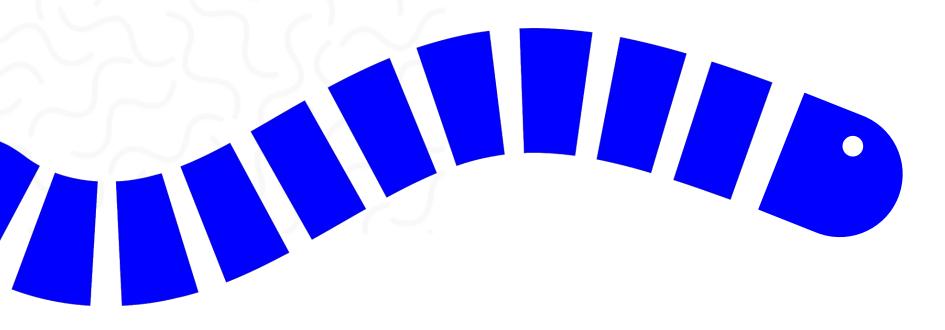
Weighing to prepare rearing boxes

Sorting of mealworms boxes before measurement of results

Dead mealworms samples



Excrement samples



PS consumption (g/d/100 mealworms)

FUTURE DEVELOPMENTS

SHORT-TERM (TECHNICAL)

- Milestone #1: Conditions/materials for healthy growth and best biodegradation
 - $/\!\!/$ 4-5 months, in the pilot farm
 - Testing conditions (temperature, relative humidity, photosensibility)
 - Testing farm materials
 - Testing farm rearing process
- Milestone #2: Food/organic waste for the best biodegradation / best environmental impacts

// 4-5 months

- Testing food (quantity, mix, ...)
- Partnership with industrial food companies
- \circ ~ Testing feeding with organic waste

• Milestone #3: Plastic incorporation into mealworms and bioaccumulation

// 5-6 months, €€€ (chemical and biological tests)

- $\circ \quad \ \ {\rm Partnership \ with \ laboratories}$
- Quantification of plastics incorporation
- Testing of non-bioaccumulation
- Milestone #4: Remnants molecules in excrements and complete biodegradation process

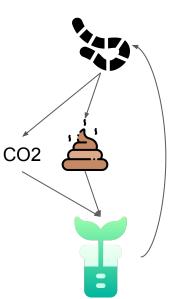
// 5-6 months, €€€ (chemical tests)

- Partnership with chemists (Carbios)
- Testing other organisms
- Process of producing fertilizers

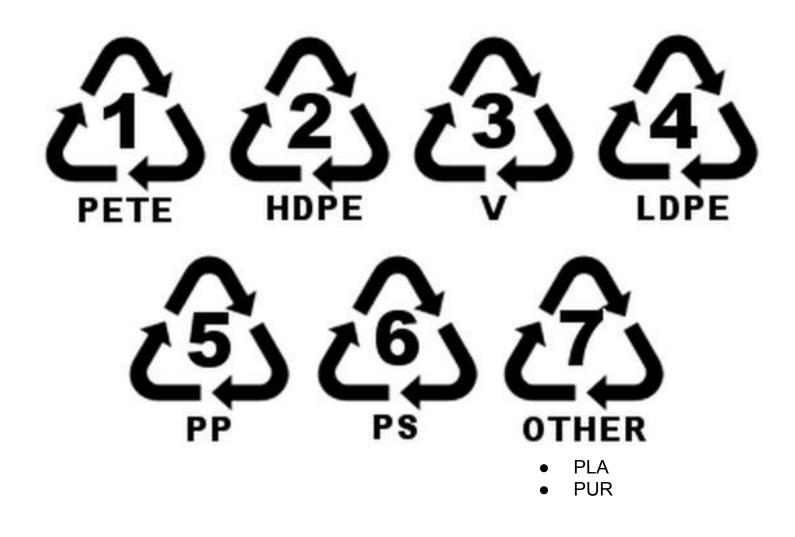
411, 4

<u>Selection of mealworms</u>

• Food used for rearing mealworms


• Conditions of the environment: optimizing the factors that enable rapid eating rate

• Combination of organisms to facilitate biological process



• Association with plants to reuse CO2 and excrement (completed circular economy)

OTHER PLASTICS

"Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae)" https://doi.org/10.1016/ichemosphere.2018.08.078

OTHER ORGANISMS

Nylon,

Acrylic

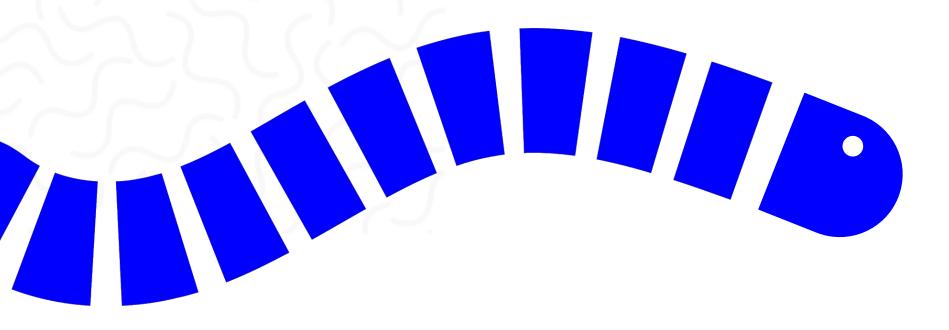
Only for polystyrene:

Worms (4 species minimum)

- Tenebrio molitor (mealworms) Ο
- Zophobas atratus (superworms) Ο
- Tenebrio obscurus Ο
- Ο ...

Bacteria (10 species minimum)

- Exiguobacterium Ο
- Rhodococcus ruber Ο
- Actinomycete sp Ο
- Ο ...


Fungi (5 species minimum)

- P. chrysosporium Ο
- Trametes versicolor Ο
- Ο ...

Polymer type	Short	Chemical formula	Density (g·cm ⁻³)	Biodegradation	Molecular structure	Recycle ID code
High density polyethylene	HDPE	(C ₂ H ₄) _n	0.917-0.965	Not reported		
Low density polyethylene	LDPE			Bacteria, fungi,	$\langle m m \rangle_n$	
Linear low density Polyethylene	LLDPE			waxworms, mealworms		PE-LD
Polypropylene	PP	(C ₃ H ₆) _n	0.90-0.91	Not reported	CH ₃	
Polystyrene	PS	(C ₈ H ₈) _n	1.04-1.1	Bacteria, mealworms		
Polyvinylchloride	PVC	(C ₂ H ₃ Cl) _n	1.16-1. <mark>5</mark> 8	Fungi	$\begin{bmatrix} \mathbf{H} & \mathbf{CI} \\ \mathbf{H} & \mathbf{H} \end{bmatrix}_{\mathbf{R}}$	
Polymethylacrylate	PMA	(C4HgO2)a	1.17-1.2	Cyanobacteria	$\begin{bmatrix} \hat{\mathbf{h}} & \hat{\mathbf{h}} \end{bmatrix}_n$ $= \begin{bmatrix} \mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H}_2 \end{bmatrix}_n$ $\mathbf{H}_{\mathbf{C}_{\mathbf{N}}} = \begin{bmatrix} \mathbf{C}\mathbf{N} & \mathbf{C} \\ \mathbf{C}\mathbf{N} \end{bmatrix}$	\bigtriangleup
Polyethylene terephthalate	PET	(C10HaO4)a	1.37-1.45	Bacteria	5087	Å
Polyurethane	PUR	$(\mathbf{R} - (N = \mathbf{C} = \mathbf{O})_n$	1.20	Fungi	$ \begin{array}{c} 1 \\ 0 \\ -\left(\overset{O}{C} = N - R_{\overline{1}} N = \overset{O}{C} - O - R_{\overline{2}} O \right)_{\overline{n}} \end{array} $	PET 07
Polyester	PET,	PET or various	1.24-2.3	Bacteria	Similar to PET or various	~

TECHNICAL ANSWERS

Effect of polystyrene on mealworms (source)

1) "Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests"

Yu Yang, Jun Yang, Wei-Min Wu, Jiao Zhao, Yiling Song, Longcheng Gao, Ruifu Yang, and Lei Jiang *Environmental Science & Technology* **2015** *49* (20), 12080-12086 DOI: 10.1021/acs.est.5b02661

Styrofoam was efficiently degraded in the larval gut within a retention time of less than 24 h. Fed with Styrofoam as the sole diet, the larvae lived as well as those fed with a normal diet (bran) over a period of 1 month. The analysis of fecula egested

8) "Effect of Styrofoam Waste Feeds on the Growth, Development and Fecundity of Mealworms (Tenebrio molitor)" Nukmal, Nismah (2018) OnLine Journal of Biological Sciences, 18 (1). pp. 24-28. ISSN 1608-4217

are noted. The results showed, in comparison to the standard diet, EPS and XPS foam feeds did not give a significant effect on the mortality of the

Remaining polystyrene in mealworms (source)

Yu Yang, Jun Yang, Wei-Min Wu, Jiao Zhao, Yiling Song, Longcheng Gao, Ruifu Yang, and Lei Jiang *Environmental Science & Technology* **2015** *4*9 (20), 12080-12086 DOI: 10.1021/acs.est.5b02661

formation of depolymerized metabolites occurred in the larval gut. Within a 16 day test period, 47.7% of the ingested Styrofoam carbon was converted into CO₂ and the residue (ca. 49.2%) was egested as fecula with a limited fraction incorporated into biomass (ca. 0.5%). Tests with α ¹³C- or β ¹³C-labeled PS confirmed that the ¹³C-labeled PS was mineralized to ¹³CO₂ and

9) "Fate of Hexabromocyclododecane (HBCD), A Common Flame Retardant, In Polystyrene-Degrading Mealworms: Elevated HBCD Levels in Egested Polymer but No Bioaccumulation"

Anja Malawi Brandon, Sahar H. El Abbadi, Uwakmfon A. Ibekwe, Yeo-Myoung Cho, Wei-Min Wu, and Craig S. Criddle *Environmental Science & Technology* **2020** *54* (1), 364-371 DOI: 10.1021/acs.est.9b06501

removal) with nearly a 3-log removal after 48 h. In mealworms fed PS containing high HBCD levels, only $0.27 \pm 0.10\%$, of the ingested HBCD remained in the mealworm body tissue. This value did not increase over the course of the experiment, indicating little or no bioaccumulation. Additionally, no evidence of higher trophic level bioaccumulation or toxicity was observed when *L. vannamei* (Pacific whiteleg shrimp) were fed mealworm biomass grown with PS containing HBCD. Differences in shrimp

Remaining polystyrene in excrements

Contacts:

- PhD F.WATTEAU: specialist in microplastic in soil, CNRS Research engineer
- P.CHENON: independent expert in fertilization approval VoxGaia

Studies:

 Wei-Min Wu: a senior research engineer in Stanford's Department of Civil and Environmental Engineering (who has led or co-authored most of the Stanford studies of plastic-eating mealworms)

> droppings. Mealworms fed a steady diet of Styrofoam were as healthy as those eating a normal diet, Wu said, and their waste appeared to be safe to use as soil for crops.

Reuse:

- Carbon Capture, Use and Storage (CCUS): a growing economy
- Microalgae: the future of the fuel
- Plants: additional production of food for mealworms + reuse of excrement
- Mushrooms: an easy and healthy human food

LEGISLATION

Contacts:

- From French Ministry of Agriculture and Food: V.PLOUHINEC
- French member of parliament: Y.KERLOGOT

- Memorandum DGAL/SDSPA/2019-836 of the 04/12/2019
- Regulation EC N°1069/2009
- Regulation EC N°142/2011
- Regulation EC N°183/2005
- Classified Installation for Environmental Protection (ICPE)

"This work provides an answer to many people who asked us whether it is safe to feed animals with mealworms that ate Styrofoam", said Wei-Min Wu, a senior research engineer in Stanford's Department of Civil and Environmental Engineering

MORE ON SUSTAINABLE FARMS

Title	Date	From	Read by	Internet site	Where	Informations on	Informations about
Insects as food and feed: Nutrient composition and environmental impact	2015 Jan.	Dennis G.A.B. Oonincx			https://drive.google.com/drive/fold ers/1Bmautx6MIMK7A5SKIXOS3 GQWSx-AMcha		
An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption	2010 déc.	Dennis G.A.B. Oonincx		https://www.ncbi.nlm.nih.gov/pmc/ar ticles/PMC3012052/	https://drive.google.com/drive/fold ers/1Bmautx6MIMK7A5SKIXOS3 GQWSx-AMcha		Greehouse gases
Mealworm meal for animal feed: Environmental assessment and sensitivity analysis to guide future prospects	2017 sept.	A. Thévenot et al.		https://www.sciencedirect.com/scien ce/article/pii/S0959652617320437	https://drive.google.com/drive/fold ers/1Bmautx6MIMK7A5SKIXOS3 GQWSx-AMcha		General / Life Cycle Assessment
Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment	2012 déc.	Dennis G.A.B. Oonincx			https://drive.google.com/drive/fold ers/1Bmautx6MIMK7A5SKIXOS3 GQWSx-AMcha		Life Cycle Assessment
Mealworms for Food: A Water Footprint Perspective	2015 nov.	University of Salento			https://drive.google.com/drive/fold ers/1Bmautx6MIMK7A5SKIXOS3 GQWSx-AMcha		Water impacts

INITIAL **INVESTMENT** 600 sqm FARM

R&D JV Partner

3

www.wormgeneration.com

malte.paschen@outlook.com