

BIO-TECH TRAINERS WORKSHOP

"From natural to engineered ecosystems"

Green roof as Solution for the mitigation of Urban Heat Island and Urban Water Management Issues

Dr. Séré Geoffroy

Introduction

Structure and Aims of the Lecture

- Define and describe the causes and consequences of 2 main environmental urban issues: Urban Heat Island & Urban Water Management
- Present some French political responses at different levels (State, Municipality) => not presented here
- Describe the emergence and development of green roof technologies
- 4. Assess the contribution of green roof to the mitigation of the above-mentioned issues
- 5. Evocate the impact of GR ageing on the performances
- 6. Visit of experimental green roofs => tomorrow morning

All Scales matter!

Urban environmental Issues:

Urban Heat Island (UHI)
Urban Water Management (UWM)

Description of UHI

 Urban Heat Island is an urban area or metropolitan area significantly warmer than its surrounding rural areas due to human activities

Description of UHI

UHI, as expressed by air temperature, is more pronounced

Residential

or Industrial

Description of UHI

Increasing tendency of UHI over the years

- Albedo: proportion of the incident light or radiation that is reflected by a surface
- Lots of cities materials (e.g. asphalt, bricks) have low albedo
 => urban areas store heat during the day

$$\alpha$$
 = 0.2 - 0.3

$$\alpha$$
 = 0.1 - 0.2

- <u>Urban morphology</u>: shape of cities in terms of their form, function, and layout
- High buildings and narrow streets => poor ventilation + trapping effect

Fig.4 : Effet de Trapping (UV et IR)

Anthropogenic heat rejection: consequence of human activities

(e.g. car, heating, air-conditioning)

Heat loss form private building

European heat rejection mapping

- <u>Greenhouse-gases and fine particles emission</u>: different sources (*e.g.* car, heating, industrial processes) from human activities
- They generate a local greenhouse effect by transforming solar radiation into infrared emissions that cause T°C increase

- Lack of vegetation: Urban areas are still sparsely vegetated
- Vegetation contributes to cooling effect through evapotranspiration and shadowing

Consequences of UHI

- Disturb urban microclimate (e.g. altering of local wind patterns, development of clouds and fog, rates of precipitation)
- Compromise human health and comfort (e.g. troubles due to extreme heat, respiratory diseases)
- Increase energy consumption (e.g. air conditioning increase)
- Impair water quality (by heating it)

Description of issues with UWM

- Urban flooding is the result of heavy rainfall and the consequence of the saturation of drainage systems and/or rivers/coast overflowing
- "The economic costs associated with these extreme events exceeded \$110 billion in the year 2012 alone" (Neal, 2014)

Description of issues with UWM

- <u>Decline of water quality</u> is the consequence of the contamination of water by trace elements and organic pollutants through runoff
- Drinking water i.e. surface or ground water treated in order to be drinkable - has various prices among countries:
 1.6 € m⁻³ (Spain) up to 8.3 € m⁻³ (Denmark)

Causes of issues with UWM

- Soil sealing: covering of the ground by an impermeable material
- It prevents water from infiltrating and cleansing through the soil

Causes of issues with UWM

- Urban runoff: Urbanization increases the variety and amount of pollutants (organic contaminants, trace elements, viruses & bacteria, pesticides, road salts) carried into streams, rivers, and lake
- It increases the pollutant loads

Causes of issues with UWM

COMET program

- Lack of vegetation: Urban areas are still sparsely vegetated
- Vegetation needs infiltrating soils and contributes to water cycle through evapotranspiration and filtering

GOOD GROUND COVER PAIR GROUND COVER COVER

UHI + UWM issues

Analogous causes, synergetic effects

Urban sprawl

 Since the mid 1950s the total surface area of cities in the EU has increased by 78 %, whereas the population has grown by only 33 %

What is a green roof?

An ancestral technique

Either for thermal insulation (Nearctic and Paleartic realms)
 or aesthetic purposes (Hanging Gardens) => Nature as a template

Three main types of green roof (GR)

 Classification – extensive / semi-intensive / intensive - as a function of their: depth, weight (required bearing capacity of the roof), vegetation, cost and maintenance

+ Rooftop vegetable garden

Declination either as semi-intensive GR or growing containers

Montage d'une experimentation en toiture

Composition of an extensive GR

Different layers with dedicated functions

GR's vegetation

- Plants adapted to dry & shallow soils that require low maintenance
- Various sedum species
- Ground cover (e.g. thyme, marigold)
- Blooming plants (e.g. armeria, iris)

sedum acre sedum album

sedum floriferum

sedum hispanicum

sedum kamtschaticum

GR's substrate

- Mixtures of materials that shall be as light as possible, capable to provide nutrients and to store available water for plants
- Association of various proportion of organic (e.g. peat, compost, bark) and mineral (e.g. pozzolana, brick, expanded clay)
 products => depends on climatic conditions

Existing project

 Artem in Nancy = innovative extensive green roof that strongly limits the discharge of rainwater

Existing project

 Centre Robert Doisneau in Paris = a rooftop therapeutic garden dedicated to persons with reduced mobility

Topager

Ongoing project

L'Hospitalité = green walls, rooftop vegetable garden, housing

Ongoing project

 Ôm at Issy-les-Moulineaux = a feng-shui architectural project that combines hanging trees, green roof, housing and commerces

Ecosystem services provided by green roof

Mitigation of UHI

Sensible heat flux + surface temperature

Green Roof Comparison

Mitigation of UHI

Decrease of the sensible heat flux

Mitigation of UHI

Reduction of the surface temperature

T-surf-REFT-surf-GR

Thermal insulation of the building

Deep temperature

Green Roof Comparison

Thermal insulation of the building

 Mitigation of the daily temperature variation thanks to GR

Retention / detention / evapotranspiration of water

Water fluxes

Green Roof Comparison

Expected contributions of GR to major stakes

Measurement at the GR's scale

Influence of GR ageing on performances

Question

Sustainability of green-roofs' performances?

Scientific question

Maximum water holding capacity

- Comparison of virgin and aged (3 to 5 years) substrates
 - Increase of the max.
 water holding capacity in all cases,
 - despite some decrease of bulk density...
 - ... complex evolution of the poral architecture

Poral architecture

- Comparison of virgin and aged (3 to 5 years) substrates
 - Significant increase of microporosity over time
 - Variable decrease of macroporosity and mesoporosity

Hydrological performances

Lab experiment

- The virgin substrate
 retain more water
 (15 mm) than the
 aged one (11 mm)
- The detention time
 of the aged substrate
 (15 min) is smaller
 than the virgin one
 (20 min)

Take Home Messages

Conclusions

- Urban areas concentrate specific environmental issues (UHI + UWM)
- Green roof is a Nature Based Solution
- that could provide valuable ecosystem services and contribute to the mitigation of UHI and UWM
- But green roofs are living systems that are submitted to an early pedogenesis which may affect their performances

